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DETERMINING THE SMALL SOLUTIONS 
TO S-UNIT EQUATIONS 

N. P. SMART 

ABSTRACT. In this paper we generalize the method of Wildanger for finding 
small solutions to unit equations to the case of S-unit equations. The method 
uses a minor generalization of the LLL based techniques used to reduce the 
bounds derived from transcendence theory, followed by an enumeration strat- 
egy based on the Fincke-Pohst algorithm. The method used reduces the com- 
puting time needed from MIPS years down to minutes. 

The main computational problem when solving a diophantine equation is usually 
the location of the "small" solutions. In this paper we assume we are given the 
generators of two finitely generated multiplicative subgroups of some number field 
K. In what follows we shall denote these subgroups by GI and G2. We also assume 
that we are given two fixed algebraic numbers al, ca2 E K*. In [4] the author gave 
a practical algorithmic solution to the determination of all the solutions to the 
equation 

(1) aliTi + aU22 + 1 = O with (rI,Tr2) E GI x G2. 

That there are finitely many solutions to such an equation follows from work of 
Siegel. An effective proof of the finiteness of the number of solutions was first given 
by Gyory, [3], using Baker's method of linear forms in logarithms. 

Using an adaption of Gyory's method combined with the reduction techniques 
of de Weger [9], one can reduce the solution of (1) to the determination of the 
"small" solutions. The technique used in [4] to determine such solutions was a 
sieving technique which lent itself to implementation on a parallel computer or a 
network of workstations. For further discussion of this sieving technique see [5]. 

Recently Wildanger [10] has given a much more efficient technique of determining 
the small solutions in the case where G1 = G2 = OK. In this paper w'e extend 
Wildanger's method to the general case. The main problem that one encounters is 
the presence of finite places in the support of the two groups. 

Wildanger makes use of the Fincke-Pohst algorithm [2]. We try to avoid the 
use of this algorithm for as long as possible. This is because we feel that applying 
Fincke-Pohst to lattices generated by real vectors with very large coefficients held to 
very high precision can lead to floating point errors. This is due to rounding errors in 
the algorithm for Cholesky decomposition and in the LLL algorithm itself. Indeed, 
rounding errors introduced in the floating point version of the LLL algorithm can 
lead to the production of a basis which is not even LLL reduced. Below we make use 
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of the LLL algorithm on lattices generated by vectors with integer entries. We can 
therefore make use of the integer version of the LLL algorithm due to de Weger, [8], 
which does not suffer from numerical instability. We only apply the Fincke-Pohst 
algorithm and the floating point version of LLL when we have considerably reduced 
the precision needed in the calculations. 

1. NOTATION 

We shall let SI and S2 denote the set of primes (places), both finite and infinite, 
in the support of the groups G1 and G2 respectively. In other words 

Si = { E MK: lalp 7& 1 for some at E Gi} = Supp(Gi). 

We let ti denote the rank of the group Gi. We suppose that Gi has independent 
generators of infinite order given by i3,.. . .,3t1,i. We can then write 

'Ti = (i II )3,7;i, 

j=l 

where (i E Tors(O* ) and aj,i E 2. We let H = max laj,iI and choose b and jpg E Sb 
such that 

H = Jak,b for some k and I log 1TbIpgI = max log 1Tblp . 

Now by Lemma 1 of [4] we can determine a constant c1 such that 

(2) H < c1 I log 1Tblpg 1 

Using the method of Baker and the computational reduction techniques of de Weger, 
see [4], we can find a constant, HO, of "reasonable" size such that H < HO. By 
"reasonable" we mean "reasonable" when compared with the initial bound which 
can be derived from the application of Baker's method alone. However the value 
of HO is usually still too large to allow direct enumeration of the solutions. It is 
common to refer to the solutions such that H < HO as the "small" solutions to the 
equation. This is because any "large" solutions are eliminated by Baker's method 
and any "medium" sized solutions are eliminated by the application of the method 
of de Weger. 

Let S denote a finite set of places of K, including all the infinite ones. We let 
Sf denote the subset of finite places of S. As the set of finite places of K and the 
set of prime ideals of OK are equivalent, we shall also refer to Sf as bei'ng a set of 
prime ideals. The order of S,, = MK is given by r + 1, where r is the rank of the 
group OK. We have r + 1 = r1 + r2, where r1 is the number of real places and r2 is 
the number of complex conjugate places. We place an order on S in the following 
way: 

f 1oe(i)l 2< <rl, 

-elpi 
I C (i), ri + 1?< i < ri +r2, 

-fiordp,(i) > r + r2 pi E Sf, 

where the conjugates a(') of K are ordered in the usual way, see [7, page 225], and pi 
and fi denote the rational prime lying below pi and its residual degree respectively. 
The ramification index of pi will be denoted by ei. We of course assume some 
implicit fixed order for the places in MK- \ MI,,, a fixed order for the real places 
and a fixed order for the complex places. This gives an order on any finite set S of 
places. 
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Let R E R>I and S a finite set of places of K. We define 

((R, S)) a EctE K:-R < lalP < R for all jp EE S} 

As a last bit of notation we let L denote the set of solutions that we wish to 
determine, i.e. 

LC {(T1, T2) E GI x G2 : alTI + a2T2 + 1 = 0}. 

We then let 
CH= {(,T, T2) EE C: H < Hi}, 

by which we mean those solutions whose maximum exponent is Hi; hence LC C i H 
We also define 

CHjf(R) {(T1,T2) E Hi E ((tR,Si))}. 

Now let 
tl 

fto max exp Ho >3I log 1j PCs, 
( 

j=1 

Lemma 1. L:C = C:Ho (Ro). 

Proof. We need to show that for all p E SI we have 
I 

< ITi Ip < Ro. 
Ro- 

Let p E SI; then we have, as Iaij I <Ho, 
tl tl 

I log ITl IP I E aj, log 13j,lP I < E HI log 13j,ilp I 
j=i j=l 

< max Ho E Ilg13,iI o o 
PCs, ( j=i ) 

Hence - log Ro < log IT I P < log Ro, from which the result follows. D 

2. DECOMPOSING THE SOLUTION SPACE 

We set 
Si max max (ailp,c lav1ip) for i = 1 and 2 

P CSi US2 

and 
S3 =max min (I P) 

PCSiUS2 
2 

Now let Ri,fRj+ I IR>I with 1,52,83 < Rj+j < Ri, and let Hi E 2. We clearly 
have Rj+j > 1, as S1,82 > 1. We shall also assume that Rj+I > (S3- 1)/sI. The 
idea is then to find an integer Hi+, < Hi and then decompose the space 'HHi (Ri) 
into the union of IHi+l (Rj+?I) and a union of sets which we can then show to have 
either no non-trivial elements or a few elements which can be easily determined. 

If we can repeat this process, eventually we will be left with enumerating a set 
of the form CHj (Rj) for small values of Hj and Rf. In a later section we shall 
explain how the sets are shown to have either no non-trivial elements or a small 
set of easily determined elements. In this section we shall be content with showing 
how the solution space decomposes. 
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We define the following sets: 

Tl,p(Hi,Rj,Rj+l) = {(Tl T2) E CHi (Ri) : -oTi - 1 < 1 + s< R } 

T2,p (Hi, Ri, Ri+1) = { (T1, T2) E zHi (Ri) : I-(x1rl-1 ~ I < 1+ s1Ri+l}' 

- a2T2- < 
Si 

Ce2T21 I < S, 
T4,p (Hi, Ri, Ri+l) ={(1,2) i 2T2E C((1 +RseRi,l 12,p (H Oi R2j + H2(Ri) ((1 + S)) } 

We then define the sets 

Tj(HjjRjjRj+j) = U Tj,p(HijRjjRj+j)j 
pcS2 

T2(Hi,Ri,Rj+1) = U T2,p(Hi,Rj,Rj+j), 
pGslus2 

T3(Hj,Rj,Rj+?) = U T3,p(Hi,RiIRi+?), 

T4(Hj,Rj,Rj+1) = U T4,p(Hi,Riv,Rj+1) 
PCS, 

Lemma 2. Let Ri, Rj+ and Hi be as above. We define 

c2 = max (log (sjRji+ +1) ,log (sjRji+ + 1) log (Ri+) 

and set Hi+,= cl c2 . Then 
4 

CiH(Ri) =2H2i+l(Ri+1) U U Tj(Hi,Ri,Rj+j) 
j=1 

Proof. We assume that (71,T2) EE CHi(Ri) and that (T1,T2) 0 CHiJ(Ri+1). If this is 
the case, then there exists a q E SI such that either ITi q < 1/Rji+ or ITi q > Ri+-. 
In the first case we deduce that 

Si+ I - 2T2- lq =IClTilq <K 
8 

Now if (Ti, T2) 0 T1(Hi, Ri, Ri+ ), then for all p E S2 we have 

ie272|P = I - 1T1l - I 1+ s > I? 

We also have that 

1iC2T22 p= - x1lTi - lp < 1 + llTil p < 
I + s1R, p Si, 

Hence, for all pE S2, 

log 102r2 lp ?< max{log(1 + sl), log(1 + s1Ri+1), log(1 + siRi)} 
- log(1 + siRj). 

It therefore follows that if ITI q < 1/Rj+1 and (Ti,T2) 0 Ti(Hj,Rj,Rj+1), then 
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We now consider the case that 1TI q > Rj+1. This means 

OZ 2T2 __ 1 
- - 1 - _ _< _ 

aiTI q (oe1T Rj+q 

If (Ti, T2) , T2(Hi, R, R t+?1), then for all jp E SI U S2 we have 

Ce2T2 - 1 1> 1 

CI 1T1 Ce1T1 I- + sIRji 

In addition, 

C2T 2_ 1 1 <f 1+ sRj, p E SI, 
a1TI a1TI 

- 
a1TI + +1-1 P (ES2\SI- 

Hence (T1, T2) T4(Hi, Ri, R.+,) 
So we have 

4 

CH2(Ri) =CH (Ri+1) U U Tj(H. RiIRi+I) 
j=l 

Now assume that (TI, T2) E CH, (Rj?i). Then for all p E SI US2 we have I log ITlP I < 

log Ri+1 and 

I T21 -alTI - 1 < 
aliTi p + I < sIRji+ + 1 

G2 p O2lp 82 

Nowif (T1,T2) Ti(Hi,R ,Rji+), then for allp E S2 we have 

I T1 O1TI - 1 8 

O 2 s sIRji+ + 1 

This last inequality clearly also holds for p E SI \ S2, so we deduce for all p E SI, S2 

that if (T1, T2) E LCH (R.+l) \ T1(Hi, Rj, Rj+1), then 

I log 1IT IP I < C2, Ilog 1T21p I < C2. 

But from equation (2) we then deduce that we must have H < Hi+,. Hence the 
solution space decomposes as stated. D 

Clearly when applying this result we need to choose a value of Rj+I such that the 
methods of the following sections allow us to deduce that the sets Tj,p (Hi, Ri, Ri.-l-) 
are either trivial or easy to determine. Wildanger gives a heuristic method to 
determine the best values for Rj+I in the case where GI = G2 = O. The analysis 
in the general case appears similar, and Wildanger's choices of R,+, seem to suffice. 

3. SHOWING THAT Tj,p(Hi, RI, Rj?i) IS TRIVIAL 

In all four cases our problem can be phrased as trying to show that there are 
no non-trivial solutions to the following problem. Let p E K*, and let El,.. ,t 
denote multiplicatively independent elements of K*. Set 

t 

ib1 

with (() Tors(O* ). Let 6 E (0, 1). Then we wish to show that there are no 
solutions to the inequality 

py -lp < 6, 
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where p is some place of K and IbiI < B some given positive constant. There are 
two methods which we employ, depending on whether p is an infinite or finite place. 

3.1. p infinite. Note that for any z E C, Iz - 1 < 6 implies that IlogI zj < 
log(1/(1 - 6)). Hence we can immediately deduce that 

(log I * p real, 
log lp-y p ?6 <1 log I p complex. 

Notice that if 6 is very small, then 6' will also be very small. We choose an integer 
constant C of the size of lo' and then look at the lattice A generated by the columns 
of the matrix 

( 1 = O 1 E Et0 

[C log lE lP ... [Clog lt-1 p] [Clog lEtP] 

where [.] denotes the nearest integer function, with some fixed convention for num- 
bers of the form (2m+ 1)/2. We also define the vector -` = (O, ... , 0, - [Clog jp1P])t E 

Zt. Using the integer version of the LLL-algorithm and [9, Lemmata 3.4 and 3.5] 
we can compute a lower bound C4 on 

minjjY- '11, 'O ?A, 
f (Al#) = imin llx'll, y_ A. 

dxAY 

We can then hopefully eliminate the set under consideration using the following 
lemma. If the following lemma does not work then we need to either increase C, 
or increase Ri+,, or use the technique of the next section. 

Lemma 3. Let 

Q = (t - 1)B2 + (tB2 1 ?C6') 

Then, if c2 > Q, we can conclude that there are no non-trivial elements'y such that 
lp-y -lp 1 6. 

Proof. Put 
t 

b = [Clog lpp] + Ebi[C log jjjP]c 
i=l1 

Then 

(D-C logPjp+EbilogjEjjp < 

Hence 

01 <? 1,D-Clog pIPI + IClog p-yIPI 
< 

tB + + C6'. 
2 

Now consider the lattice point X' Az', where Z' (bl, . .. , bt) t. For it we have 
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So, if xA x, we must have 

c2 < ?(A,p )2 2< (t -1)B2 + ?2 Q. 

B ut as c 2 > Q we see that yA=x' and b, . bt-I = 0 and [Clog IpI,] + 

bt [C log IEt IP] 0. If such a solution exists it is easy to determine and will therefore 
be called trivial. D 

3.2. p finite. Let p denote the rational prime lying below p and let e and f denote 
the ramification index and residue degree of p. We shall assume that 

log >6 
ef logp - 

which is not a large restriction as we are assuming that 6 is very small. 
Our method proceeds using the p-adic analogue to the previous method for 

infinite places. If lp-y - 11 < 6 < 1, then we must have ordo(p-y) = 0. Using the 
method explained in [4, Lemma 3], we can replace p,.,,... , Et with a finite set of 
possibilities for Io, /,i,... ,, E K* such that 

t s 

P p 
=JX 

7 Jbi =o1 i 

i=1 i=1 

with ordp(jti) = 0 for i = 0,... ,s and max miI < maxI bi < B. So we are left 
with trying to determine if there are any solutions mi to the inequality 

S 

o oHII 2mi - II < 6 

with ImiI < B. For a c K* we let logp(ae) denote the p-adic logarithm of ae when 
we consider ae as an element of Kp. If we set 

S 

A = logp uo + mi logp ,i E Kp, 
i=l1 

then, as 6' > 1, 

ordp(/A) = ordp(logp(p-y)) = ordp(p-y - 1) > 
- log - 6'. 
ef log p 

Let n = [K: (Qp] and Kp = Qp(q); then we can write 

n-I 

A =E hA i, 
i=O 

where 
s 

Ai = vo,i + Emjvj,i, with vj,i E Qp and 0 < i < n-1. 
j=1 

It then follows, see [7, Page 257], that, for all i, 

(3) ordp(Ai) > 6' - Dp(O) = C5, 

where Dp(q) ordp(DiscKp/Q(p)). We then choose A E Qp such that 

ordp(A) min (min (ordp(vi,j))= C6. 
O<i<s \O<j<n-I 
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We set 
S 

A\i/A = /CO,i + E mitCj,i for i =0,. ... ,n -1 
j=l 

and so li,j E Zp. We then have that 

ordp (A/i/A) > C5 -C63 C7. 

We let u E N be such that pu is roughly the size of Bl?+s/n and such that u < C7. 
The constant u plays a similar role to the constant C in the method for infinite 
places. For ae E 7p we let a(u) denote the unique rational integer such that a = (u) 
(mod pU) and 0 < c(u) < pu. We then let A denote the lattice generated by the 
columns of the matrix 

1 ~~~~~~~0 

01 
A (t) (u) pU 0 

C 
E(n+s)x(n+s) 

(u) ... K() pu 

We also define the vector = (0,... 
,0,) -riu) (u) _ )t EE Zl+s. Using the 

y ~~0,0' .._ K ,- 
integer version of the LLL-algorithm, we can compute a lower bound c8 on ?(A, 0. 
If the following lemma does not work, then we need to either increase u, or increase 
Ri+,, or use the method of the next section, just as we did when considering infinite 
places. However we must remember that we must always satisfy u < C7; this is a 

severe restriction of the method in practice, especially when the ideal p is ramified. 

If p is ramified then C7 can become very small, due to inequality (3). 

Lemma 4. If c2 > sB2, then there are no non-trivial solutions to the inequality 

lp- lp 6. 

Proof. As ordp(Ai/A) > C7 > u for i = 0, ... , n - 1, we have, for all i, 

K(U) + ES MiK(U) 
Zi = 

' 
t=l Ej2- 

pU 

Therefore, we can consider the lattice point x= Az', where 

Z = (Tni... Tns, -ZO) ... v-Zn-1) 

Hence 

x-y= (ml,.-. ,msvO,)... Vo). 

So either c8 < (A, )2 < sB2 or x = y. The first possibility is ruled out by 
assumption, which leaves us to deduce that ml - 

T. s = 0. LI 

4. ENUMERATING Tj,p (Hi, Ri, Ri+l?) 

After application of the above techniques we will reach a space LHi (Ri) which 

we cannot decompose any further, as Lemma 2 gives rise to sets Tj,p (Hi) Ri R?i+,) 
which we cannot show have only trivial elements. 

We need to enumerate all the possible elements in Tj,p(Hi, Ri, Ri+?). It is at 

this stage that we make use of the Fincke-Pohst algorithm. However we hope that, 
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as we at least have a reduced value of Ri compared to our initial value Ro, we can 
handle any numerical instability which occurs. 

As before, we write 

a bo flbi 

i= 1 

where bi E Z. We can assume that co E {o,... , w - 1}, where w denotes the 
number of elements of finite order in K* . We have, for some R E R>j, p E K* and 
8 E (0,1), 

?< Ipylq < R 

for all q E S = Supp((ci, ... , Et)) and 

jp-y - 1 < 6. 

We have two cases to consider: p is finite or infinite. 

4.1. p infinite. Just as before we deduce that 

{ log 1 E p real, 
Ilog Ip-fy ?8 ~ 1log p j complex. 

We also have, with obvious notation, 

IArg((pry) ()) I < arccos 8 8". 

As p E S, we can write p = qj for some value of j. Consider the sublattice of R#S+1 
generated by the columns of the matrix A which is obtained from the matrix 

( log 61 lq ... log Etjq ? 0 

:___ : : E j2(#S+1)x(t+-l) 
log R log 61 q#s 

* log Ct q#s 0 \ 0 ... 0 0/ 

by replacing the jth row by 
I 

(log 61 CIq... ,log Ct qj,?) 

and the last row by 

,y Arg(c(p) ), .. , Arg(6-(P) ), Arg(((P) )) 

Note that we expect the jth and last row of A to have much larger entries than the 
other rows. Also consider the vector y obtained from the vector 

1 -log IpIq, ,, - log IpI,, O)t? E Rt. 

by replacing the jth element by - log Ip qj /8' and the last element by 

Arg((l/p)(1))/6//. 

We then have, if x is the lattice vector A(c,... , ct, co)t, 

2 log 2 jp_r + Arg 2((P_)()) log2 jP _Iq 

612 + 6112 + log 2R <- 
S+1 
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We can then combine a variant of the Fincke-Pohst algorithm [2] with the sieving 
ideas of [4] to determine all elements in Tj,p (Hi)R, R+1). 

4.2. p finite. We proceed as before, but now the ideal p allows us to alter the 
generators we are using. As before, we have 

IP- 1 Ip < 6 < 1, 

and so ordp (pry) = 0. So we again can reduce to one of a finite set of similar problems 
where ,uo 7J>1 = pry, with ordp (,ui) = 0. Suppose p has residue degree f and 
lies above the rational prime p. We put q = pf and choose n to be an integer such 
that 

8 < q-. 

As luo H-1 1M7 -1 py- 1 IP < 6, we have 
S 

uofI|J,t7 i=1 (mod n). 
i=l 1 

Let M denote the subgroup of K* generated by MOo,... ,,u5. Now, as ordp(,ui) 0 
for all i, we can consider the group M/p. Using an algorithm like the ones in [1] or 
[6], one can determine the group structure of the M/pn as a product of cyclic groups 
C, x . .. x Cg. These two algorithms are based on the Baby-Step/Giant-Step strategy 
of Shanks and Pollard's Rho method respectively. However these algorithms are 
far too general to work in a fast and efficient manner in our problem. 

Instead we first compute the orders of bui in M/p. This can be done very quickly, 
assuming p is "small", as the orders must be equal to a pth power times a divisor 
of q - 1. All that is then required, to determine the group structure, is a lattice 
enlarging procedure to determine the full lattice of relations given the sublattice 
given by the relations ji>i_ 1 (mod p) for some hi. Such a lattice enlarging 
procedure is given in [6], as algorithm MINIMIZE. It seems to work very well 
in practice although its complexity is worse than O(IM/pnl), but for smooth group 
orders the method works very fast. 

We can then map the equation 

oI|,ani I (mod pn) i=l 

to an equivalent equation in Ci x ... x Cg. We therefore generate a set of congruence 
conditions on the exponents mi modulo the orders of the groups Ci. Using these 
congruence conditions we can now write 

S 

P"Y= -tlotI i 
i=1 

for some new values ,u' E K*. Let S' denote the support of the elements ,u,..'. ,pj'. 
Clearly S' c S. We now proceed in a similar manner to the case of infinite places; 
Consider the sublattice of R#S' generated by the columns of the matrix 

log lPl4 ql ... log 4slq 

log l Jq#,s ... log bItt Sq#S) 
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Also consider the vector 

Y = 1 - log I,u1q1,... log Im' lqo", R#S - 

We then have, if x is the lattice vector A(n, ... n,)t 

qEs' log R - 

We can then determine as before all the elements in Tj,1 (Hi, R-,Ri+1) using the 
Fincke-Pohst algorithm. 

5. EXAMPLE 

We now consider one of the examples from [5]. Let K denote the number field 
generated by 0, where 

08 + 1 = 0. 

The unit rank of OK is three, and as generators of infinite order we can take 

m 02 +04 +06 2 = _(02 +03 +04)) 3 = 1 +03 -05. 

The element = -07 generates the sixteen roots of unity in K. There is one 
prime ideal, t, lying above (2), and it has ramification index eight. This ideal is 
principal, and as a generator we can take 7r = 1-0. In [5], as part of a much larger 
computation, it was necessary to compute the 795 solutions to the unit equation 

Tl + T2 + 1 = 0 

where 
Ti 

a a 
,aO2,,3Wa4 ,T2 = boi 772 ?3 7rb 1 1 2 3 1 ,T 2 (bA12A3T 

Clearly we can assume that 0 < ao, bo < 15, whilst for i = 1,... ,4 we can determine 
that we must have Jail, lbil < 1066 = Ho. Using a sieving technique alone it took 
around 27 MIPS years to compute all the solutions to the S-unit equation. This 
meant having to run a network of workstations on this problem for nearly three 
weeks. 

We apply the method of this paper and determine Ro = 103598 and c1 = 1.63189. 
Hence by Lemma 1 we have that L = LHO(Ro). If we set R1 = 1090, then it is 
easy to determine, using Section 3, that the sets Tj,p(HO, Ro, Rj) are ,empty for 
i = 1,... ,4 and P E MK. A similar result holds for the finite place t once we 
compute that the 2-adic logarithms of our fundamental units are given by 

log2 (ri) 18689987985562906 + 5939072476619502 

+351843720888320 + 0(250), 

1og2 (q2) = 6565730847813407 + 195695972877837/206 + 5455474646892305 

+5539641630867703 + 24206352677363/202 + 794782263882980 

+43980465111040 + 0(250), 
log2 (q3) 9058078839750907 + 94575096855027/206 + 16241433172242205 

+5748799383277803 + 345229554255373/202 + 1293215371576910 

+43980465111040 + 0(250). 

Hence from Lemma 2 we conclude that = LH1 (R1), where H1 = 338. The total 
time needed to compute this reduction was less than one second. We however have 
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a problem in carrying out this step again, using the LLL-based method of Section 
3, to show that the sets Ti,t(Hl, Rl, R2) are trivial for some R2. This is because 
of inequality (3), which means that we must choose a constant u in the algorithm 
such that 

U _< C7- C5 - C6_ 
- log 8 

U?C7CSC6 ~~8'log 2 

with 6 1/R2. For the values of 6 now under consideration this means that u 
must be chosen too small to be of any use. For the sets Ti,t(Hl, Rl, R2) we must 
therefore use the method based on the Fincke-Pohst algorithm. 

For our second application of Lemma 2 we choose R2 = 1030. The LLL-based 
technique of Section 3 allows us to show that the sets Ti,p (H1, R1, R2) are trivial for 
the places not equal to t. However, for Ti,t(Hl, R1, R2) we need to use the method 
of Section 4. This means that we must determine all the solutions to the following 
problem: 

log IP < log(1 + Ri) < 208 for pEM, 

IP- 'It < 10-30 

where 

p = (0Co 1?1]22C3 FC4 

and IC1, Ic2I,IC3I,IC4I < 2 x Hi = 676. Clearly we must then havec4= 0 and p _ 1 
(mod p99). This is much too high an exponent to work with, so we try to determine 
the larger set of all p with 

p =(coqC1 C2 3C3_ 1 (mod p 44). 

Using the group theoretic algorithms mentioned previously, we determine the struc- 
ture of the group M/p44, where M (C, ri, 2, ) It is easy to determine that 

,16 _32 _64_ 1 (mod p44), 

and we can then determine the group structure in under two seconds using the 
lattice enlarging procedure of [6]. The group turns out to be isomorphic to C64 X 

C32 x C32 x C16, and we deduce that 
p - (2)dl(4) d2 (,32 322) d3 

for some integers dl, d2, d3. Using the four inequalities I log IP < log(1+Ri) < 208 
for p E MK, we can then determine that there are no non-trivial elements in 
Ti,t(Hi, R1, R2) for i = 1,... ,4 using the Fincke-Pohst algorithm, which takes 
about a second of computing time. 

We are therefore left, by Lemma 2, with determining the solutions in LH2(R2) 

with H2 = 112. We now choose R3 = 1015 and none of the LLL based methods 
now work. For the finite place the computation in the previous paragraph will 
suffice, as 2-44 > 10-15. For the infinite places the application of the Fincke-Pohst 
based method of Section 4 allows us to show, in about one second, that the sets 
Ti,p (H2, R2, R3) contain only the trivial elements. Hence we need only consider the 
solutions in LH3 (R3) where H3= 56. 

We now set R4 = 106, and when considering the finite place we now need to look 
at all solutions of 

Ilog Plpl < log(1+R3) < 35 for p E MK, 

p 1 (mod t20), 
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where 
p = (tq4)d1 (qi6)d2 (,q8)d3 (,i12r,4 4)do 

with do E {0, ... , 3} and di E Z. It then takes a few seconds to determine all the 
elements in Ti,t(H3, R3, R4) for i = 1, ... , 4 using the Fincke-Pohst algorithm. For 
the infinite places we apply the method of Section 4 and determine in under five 
seconds that there are no non-trivial elemnentA in Tj,p(H3, R3, R4) for i = 1,... ,4 

and p E MK. So we can conclude that we need only consider the set LH4 (R4) 
where H4 = 22. 

Finally we perform the whole process again for R5 = 103. Once again the sets 
Ti,p(H4,R4,R5) are empty for i = 1,... ,4 and P E MKP. The sets for the finite 
place t are non-trivial but can be determined in a matter of seconds. We are finally 
left with enumerating the set LH5(R5) for H5 = 11. Enumerating this set can be 
accomplished using an adaption of the methods in Section 4. 

We conclude that we can compute all the solutions to the S-unit equation above 
in a matter of minutes rather than MIPS years as was previously the case. 
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